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ABSTRACT

Formulas for the cross-correlation and spectral density functions of
the scalar wave field radiated by a random point source in a three-dimensional
time-dependent random medium are derived. The medium is assumed to be statisti-
cally homogeneous and isotropic and to be statistically independent of the
source. The analysis is based on a modification of the smoothing method. An
approximate expression for the power spectrum of the wave as a function of
the source-field point distance (or propagation distance) is obtained for the
case in which the characteristic frequency of the source is much greater than
that of the medium. This expression shows that the wave spectrum approaches
a limiting form, which is referred to here as the fully-developed spectrum,
with increasing propagation distance. It is also found that the total signal
power is conserved as the spectrum evolves. Results obtained for the case of
a narrow-band source indicate that the spectral bandwidth increases initially
as the square root of the propagation distance, but that at larger distances
it approaches a limiting value. Numerical results obtained for the narrow-band
case show a progressive broadening of the wave spectrum with increasing pro-
pagation distance and/or with increasing strength of the randomness of the

medium, in agreement with observations.

*

This report is a revision of ICASE Report 78-11. It was prepared as a result
of work performed under NASA Contract Nos. NAS1-14101 and NAS1-14472 at ICASE,
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INTRODUCTION

Broadening of the frequency spectrum of an initially narrow-band wave
field is a phenomenon which is characteristic of wave propagation in a time-
dependent medium, and is a result of amplitude and frequency modulation of
the spectral components of the wave by the time variations in the properties
of the medium. Of particular practical interest is the effect of random
fluctuations of the medium, and indeed spectral broadening due to propagation
through turbulence has been observed in the case of both acoustic and electro-
magnetic waves 192 The present investigation was undertaken with the purpose
of studying this effect, i.e., spectral broadening arising from the presence
of random, time-dependent fluctuations of the medium, from a rather general

point of view.

Previous theoretical investigations of spectral broadening of waves in
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random media include those of Howe®, Fante R anq Woo, et al.®. Howe
derived a kinetic equation and used it to study the effect of the random
velocity field on the frequency spectrum of an acoustic wave propagating in
a turbulent fluid. Fante used transport theory to study frequency spectra of
beamed waves propagating in a turbulent atmosphere. The analysis of Woo, et
al. (see also Ref. 7, p. 422) ié based on the parabolic approximation. Howe
treated the case of an isotropic time-dependent turbulence field, whereas
both Fante and Woo, et. al. assumed that the time variations of the medium

were the result of a steady mean wind convecting a "frozen" turbulence field
y

in a direction perpendicular to the direction of propagation.

The authors mentioned above based their analyses on different mathematical

models and/or calculated different statistical properties of the wave field

than those considered in the present investigation (e.g., Woo, et al. considered

the spectrum of the complex wave amplitude, whereas the present investigation



deals with the entire wave function, which is a real quantity), and hence their

results do not agree in all respects with those obtained here. The results of

both Howe and Fante indicate that, over a suitably restricted propagation
path and for high-frequency waves, the characteristic width of the wave
spectrum increases as some power of the propagation distance. The results
of Woo, et al. are given in a more complicated form, but seem to show a
similar effect. These results agree generally with those obtained here for
small propagation distances. At large distances, however, the present
results indicate that the spectral width approaches a limiting value, which
is not predicted by any of the theories mentioned above.

The problem of spectral broadening has also been treated in a recent
paper by Kuznetsova and Chernov®. Their analysis, like that of Woo, et al.,
is based on the parabolic approximation with a frozen turbulence model. Their
results also indicate an increase of the spectral width as some power of the
propagation distance for small propagation distances. However, since their
expression for the wave spectrum is given in the form of a power series in
the propagation distance, the behavior of the spectrum for large propagation
distances, as predicted by their theory, is not clear.

Spectral broadening in a random medium has also been discussed from
a theoretical viewpoint by Adomiang; however, that author did not obtain an
explicit analytical expression for the wave spectrum. Related work, concerned
mainly with spectra of scattered waves (in contrast to the present investigation,
which deals with the spectrum of the total wave field) and with spectra of
amplitude and phase fluctuations of waves propagating in random media, can

be found in Refs. 10-16.




I. ANALYSIS

The starting point of the analysis is the scalar wave equation
(723 -VHu=f , (1)

where u is the wave function, f is the source term, and ¢ dis the
local propagation speed of small disturbances of the medium. All quanti-
ties are assumed to be real functions of t and x, where t 1is time and
X [=(%,,%,,%x,)] dis a three-dimensional spatial coordinate.

The propagation speed ¢ 1is assumed to be random; i.e., ¢ 1is assumed
to depend on a parameter a which is an element of a sample space A. The
space A, together with a 0-algebra of subsets and a probability measure,
forms a probability space. The source term f is also random; however £
is assumed to be statistically independent of c¢. Thus, f may be regarded as
being dependent on a parameter b ranging over a different sample space B
which, together with its own O-~algebra of subsets and probability measure,
also forms a probability space.

It is clear that the solution u of Equation 1, as well as functiomns of
it, will depend on both a and b. (The dependence on the parameters a and
b of the various quantities appearing in the analysis will not, in general,
be explicitly indicated.) It will be necessary, therefore, in what follows to
distinguish between ensemble averages over the space A, which will be denoted

by < >A, and averages over B, denoted by < > An average over both A

B
and B (i.e., an ensemble average over the product sample space A X B) will

be denoted simply by < >. We note that generally < > = << >A>B = << >B>A.

In most cases involving wave propagation in real media such as the atmos-

here or ocean the fluctuations in the medium properties can be regarded as small.



Thus it is realistic, as well as mathematically convenient, to write ¢

in the form
c(t,x) = co[l+en(e,x)] . (2)

Here € 1is a small parameter which is a measure of the magnitude of the
fluctuations of the medium, and Uy is a random function with zero mean

and unit variance; i.e., <u>, =0, <u?> = 1. The quantity c the

A A 0’

average of ¢, is assumed to be a constant.

Writing ¢ as in Equation 2 allows the problem to be soived by a
perturbation technique. To begin, we substitute the expression for ¢
given by Equation 2 into Equation 1 and expand in powers of €. This

yields
(Ly+ €Ly + €’L, + ***)u=f (3)

where the operators Ly, L,, and L, are given by

= =212 _ g2
L0 = c Bt Ve, (4)
L, = -2c°udy (5)
L, = 3cg2u?d? . (6)

From Equation 3, approximate equations, valid when € is small, can be

obtained for u and U, where u = <u>A and u T u - < u>,. The procedure

is entirely analogous to that described by Keller!” (see also Ref. 18). It is




only necessary to keep in mind that since £ 1is independent of a it is
unaffected by averaging over A. When < L1>A = 0, which is usually the

case in practice, these equations reduce to
Mu = f |, o))
u=-eglj'Lju , (8)
where the operator M 1is defined by

M =L, +e?(<L,>, = <LiL3'L>,) . (9)

Terms of order €® have been dropped from Equation 7; terms of order

€2 have been dropped from Equation 8.

In the special case in which f is determinate (i.e., non-random) the
quantities u (which is then also &eterminate) and u correspond respectively
to the mean and fluctuating fields. In that context the type of approach
leading to Equations 7 and 8, which involves obtaining separate equations for
the mean and fluctuating fields, is referred to as the smoothing method by
Frisch!®.

We shall be concerned in the remainder of this paper only with random
processes which are stationary in time. (By stationary we mean stationary
in the wide sense, i.e., that correlation functions of the form given by
Equation 19 are independent of t.) In order to ensure that u(t,x) is
stationary in time we shall assume that both u(t,x) and f(t,f) are

stationary in time. That these assumptions are sufficient for our purposes

will become clear as the analysis proceeds. In addition, we shall assume for



convenience that u(t,}‘) is statistically homogeneous and isotropic in
space, and that <f>B = 0.
We introduce next the Green's functions G, (t,g{l) and G(t,z‘(), which

are solutions of the equations

L,G,(£,%) = 6(1)§(x) , (10)
MG(E,x) = 8(8)8(x) , (11)

and which satisfy the initial conditions G, =G =0 for t < 0. (No
boundary conditions need be imposed on G, or G since we are considering

only free-space propagation.) Then L'o'1 can be written in the form
Lo_lw(t,gg) =/fGo(t_t",’,‘y"oi')w(t",,’f,')dt'df.,' , (12)
where w(t,x) is any function for which the integral exists. (Here, and

henceforth, an integral sign without limits denotes an integral from -

to +«<.) Similarly, the solution of Equation 7 can be expressed as
a(t,x) =~/:/'G(t—t',v§—>ﬂcv')f(tv' ENdtTdx' (13)

By making a change of integration variable we can write Equations 12 and 13

in the form

Lo'lw(t,ﬁ) =ﬂGo (t',ﬂ}i')w(t—t',ﬁ—g{v')dt'dﬁ' , (14)
- - ' ' 1 ' '
u(t,ﬂ)s) —ﬂG(t »X )f(t—t',ﬁ—;&/ )dt'dx' . (15)




It should be pointed out that, as a consequence of the assumption
that u(t,ﬁ) is stationary in t and X, the operator M commutes with
both time and space translations. This allows the Green's function G in
Equation 13 to be written as a function of the differences t-t' and
§f§f, instead of as a function of ¢t,t', X, and ﬁj separately. Since
the operator L, has constant coefficients, it also commutes with both
time and space translations, and hence the Green's function G, in
Equation 12 can also be written as a function of t-t' and ,57£" That
G, and G can be written as functions of t-t' in Equations 12 and 13 is
necessary for the stationarity of u. Note also that both G, and G are
determinate functions.

Operating with L, on u, as given by Equation 13, yields
Liu(t,x) = -ZCET/:/‘u(t,gs)Gtt(t—t','}’gf;,:v')f(t',}")dt'd}v' . (16)

(The subscripts on G denote derivatives.) By making a change of integration

variable we can write Equation 16 in the form
- - -2
Lyu(t,x) = -2¢; ’/“/u(t,;(w)Gtt(t',ﬁ')f(t—t',;{/—g’(b')dt'di' . a7

Operating on Equation 17 with L;l , as given by Equation 14, and substituting

the result into Equation‘8 yields

tl(t,}s) = 28(‘.;2 f.f Go(t".,)é')Gtt(t” 93‘3”)

x ut-t',x-x")f(e-t'-t" ,x-x'"-x' )dt'dgx'dt" dx" . (18)



The cross~correlation function R(Taﬁ’z) is defined by

R(T,%,y) = <u(t,x)ult-T,y)> . (19)

B

Upon writing u as the sum u u+ 1 in Equation 19 we obtain

R(T,%,y) = <u(t,x)u(t-T,y)> + <u(t,0)u(t-T,y)> + <i(t,x)u(t-1,y)>

+ <ﬁ(t,§)ﬁ(t—T,y)> . (20)

The two cross terms on the right-hand side of Equation 20; i.e., the terms
involving products of u and U, vanish. This follows from the fact that
a and that <fi>A = (0. Thus, for the first cross term,

u is independent of

we can write
<a(t,x)u(t-1,y)> = <<a(t,x)u(t-1,y)>,>, = <u(t,x)<u(t-T,y)> >, = 0

(since <f1(t-—T,y)>A = 0), and similarly for the second cross term. Expressions
for the remaining two terms on the right-hand side of Equation 20 can be

obtained with the aid of Equations 15 and 18, after which Equation 19 can be

written

R(T,3,y) = R(T,x,y) + K(T,5,y) (21)

where




ﬁ(T’,}év’zv) <G(t)i{~)a(t—Tsz_)>

f.fc(t' ,X')G(s',y IR (T-t"+s' ,x-%x",y-y")

x dt'dx'ds'dy' , (22)

R(T,x,y) = <@(t,0)8(t-1,y)> = 4e’cy"

eeo e 1 L L] L] " 7" 11] "

xf fGo(t »¥")6 (s',y")G (" ,x )Gtt(s y" )

x F(T—t'+S' ’1-§+§'_1')R0 (T—t'+S'—t"+S",'&(—Z‘('—_‘}s" ’X-X'—Z" )

x dt'dﬁ'ds'QX'dt" dﬁ" ds" de' . (23)

The correlation functions I and R, are defined by

F(TQE) = <U(t,.§)U(t‘T,3§+§)>A ’ (24)
R, (T,X,y) = <£(6,0)f(t-T,y)>, - (25)

In deriving Equations 22 and 23 use has been made of the fact that u is
independent of b and that f 1is independent of a.

Note that u(t,}f), as calculated here, is indeed stationary in time, as
can be seen by referring to Equation 19 and Equations 21-23.

7

The spectral density function S(w,z,y) is defined by

S(w,X,y) =/R(T,§,X)eumdr . (26)




With the aid of Equation 21 we can write

Sw,x,y) = S(w,x,y) + §(w,§,z) , (27)

e
where
iwT
d

S(w,%,y) =f§(T,;<,X)e T , (28)

S ,x,y) =fﬁ(T,§,X)eindT . (29)

To calculate S we insert into Equation 28 the expression for R given by

Equation 22 and carry out the integration over T, t’, and s'. The result is

Sty = [ 1008 0,550 wmx gy exdy (30)

where we have defined
Hw, %) =fc(t,35)ei‘”tdt , (31)
5, (@,%,y) =fR0 txy)ear | (32)

and the symbol ( )* denotes a complex conjugate. Similarly, an expression
for S is obtained by substituting the formula for R given by Equation 23

into Equation 29 and carrying out the integration over T, t', s', t" , and s" .

This procedure yields

-10-




“S'(w,},,x) = (Zez/ﬂcg)f'fﬂo(w,}v')Ht(w,l')
x [Zﬁnnz—ﬁ-rg'zz')*w“H(w{g")H*(w,Y")
X SO (w.”‘i{_zl_i{",z_zv_z" )]dﬁ'dx'dﬁn dX" , (33)
where H, and 2 are defined by
_ int
H (w,x) -/'Gto(t,ﬁ)e dt , (34)
2(w,£) =f.r(r,a)e1‘“cn : (35)
~ A

The notation ( ) #( ) in Equation 33 denotes a convolution with respect to

w; i.e.,
farg(w) = ﬁ(w—w' Jg(w')dw'

(Whenever the convolution symbol appears inside brackets, as in Equation 33,
it is to be understood that only the terms inside the brackets are involved
in the convolution.) In deriving Equation 33 we have made use of some known
results relating the Fourier transform of a product of two functions to the
convolution of the transformed functions.
The formulas for R and S given above are accurate to order €2} i.e.,
the error in them is of order €3. This is a consequence of the dropping of
3

terms of order ¢€° in Equation 7 and €2 in Equation 8 (note that u is of

order €), and the vanishing of the cross terms in Equation 20.

-11-



For practical purposes it is usually convenient to assume that all
processes under consideration are ergodic, as well as stationary, in time,
in which case the average denoted by < > can be regarded as a time
average.

The analysis given above can be generalized; i.e., instead of starting
with Equation 1 we can state with Equation 3 and assume that the operator
L, is determinate with a known inverse and that the operators L,, L,, etc.
are random with known statistics. The operators L,, L;, L,, etc. need
not be otherwise specified. Formulas for the correlation and spectral
density functions, analogous to Equations 21-23, 27, 30, and 33, can then
be derived for various cases, depending on the additional assumptions made
regarding the operators L,, L,, L,, etc. A general analysis of this type
has been carried 6ut and is available in report form® ,

In order to proceed further it is necessary to calculate the Green's
functions G, and G and the transforms H; and H. The function
Gy, which corresponds to a spherical pulsed wave propagating in a uniform
medium, is obtained by solving Equation 10, with L, given by Equation 4,
subject to the initial condition G, = 0 for t < 0. This yields the

familiar waveform given by
G, (t,%) = (4mx)71 8(t-c5' x) . (36)

"~ By inserting the expression for G, given by Equation 36 into Equation 14,

carrying out the integration over t', and changing the spatial integration

variable, we can express the operator L;l in the form

e = @07 feuectexr e (37)

-12-




The function Ho(w{§) is easily obtained by transforming Equation 36

according to Equation 34. The result is
H,@,%) = (4mx)? ™% (38)

where k =w/c,.
The function G(t,x) is determined by Equation 11, where the operator
M is given by Equation 9. With the aid of these equations, along with

Equations 4, 5, 6, and 37, we can write the equation for G in the form
(c5202-9%)6(t,x) + e*{3c;%6, ~(nc))™?
><f&"l[T(CEIE,E)Gtttt(t—CEIE,§+£) - 2T (c3'E,8)
X G (t=cglE,x+E) + T (c5lE,E)G, , (t-c5 8, x+E) 1dE}
= 8(6)6(x) (39)

where the letter subscripts denote derivatives. The initial condition for
G dis that G =0 far t < 0.

The procedure by which Equation 39 is solved for G(t,ﬁ) is described
in Appendix A. Since we wish only to calculate the function S, we need
only the transform H(w,x) of 6(t,x), as defined by Equation 31. For the
case in which the medium is isotropic [i.e., when F(T{é) = I'(1t,£)] this

quantity is given by

H(w,x) = €l (4mo~1e™™ | GO

-13~



where

o0

€ = k{1+3e? [3+ 4k} fe“‘E x(k,E)sinkE dE]} (41)
0
X(k,€) = KT (c5'E,8) - 2ikey T (7 E,8) - (T (c7'E,8) , (42)
C(k) = 1 + 2e2P(k) (43)
and
veo = [ e [coskz s A (44)
0

In deriving Equations 40-44 higher-order terms in € have been dropped.
The source term f 1is assumed to represent a point source in space but

one which is random in time. Accordingly we write

£(t,x) = g(0)d(x) (45)

where g(t) is a stationary random function with zero mean. Equation 25 then

yields
R, (T,%,y) = P (1)8(0)8(y) , (46)

where PO(T) is defined by

P (1) = <g(t)g(t-1)>p . , (47)

~14-




Upon transforming Equation 46 according to Equation 32 we obtain
5,(0,5y) = Q@G (48)
where Q0 is the transform of Po; i.e.,
Q, ) =fP0(T)eledT . (49)

Expressions for S and S can now be obtained by substituting the
formula for S, given by Equation 48 into Equations 30 and 33 and carrying
T "

out the integration over x' and Y' in Equation 30 and over x and y'

in Equation 33. The result is
S(W,%,7) = Q@HW,0E* (@,5) , (50)
S@,x,y) = (2e%/mct) fno(w,g)u’;@,x')
x [Z(o,z-}gg'-x')*co"Qo(m)H(m,gc_—i')H*(w,z-X')]d},'dz; . (51)

The spectral density function S(w,i,z) can now be calculated in terms of
known functions with the aid of Equations 27, 50, 51, 38, and 40.

The expression for S and S given by Equations 50 and 51 can be
considerably simplified in the case of high-frequency waves; i.e., when the
characteristic frequency of the source is much greater than that of the medium.

In considering this case we shall restrict our attention to the power spectrum

Q(w,x), which is defined by
AA
Q(w,x) = S(w,x,%) . (52)

-15-~



From Equation 27 we have

Q%) = Qw,x) + Qw,x) , (53)

where
Qw,x) = S,x,%) (54)
6«»,;9 = g(“”.’.‘.”i) . (55)

Equations 50 and 51 yield
Qw,x) = Q) [Hw,x)|* , (56)
Qw,x) = (2e?/mc?) fHO(w,X')H*(w,y’)
r Maed 0 -
x [Z(w,x'-y')%w“Qo(w)H(w,x—x')H*(m,x—y')]dx'dzj . (57)
o ” a5 n~ m o~ -
After changing the integration variables in Equation 57 we can write
Qw,x) = (2e*/mc}) fﬂo(w,'X—}f_')Ht(w,')’E‘?i")
X [Z(w,i'“-x')*w"Qo(w)H(wﬁgf)H*(w,i")]dx'd§" . (58)
The first step in the high-frequency analysis is to obtain an
asymptotic expansion, valid for large k, for the quantity «. This is
easily accomplished by integrating by parts in Equation 41, after substituting

for x from Zquation 42. This yields the approximation

~16-




K~k+ia, (59)
where
o = e2k?8 . (60)

The quantity £ is a characteristic length scale associated with the

medium, and is defined by

g = fr(cgla,s)da . (61)

With the aid of Equations 38, 40, and 59 we can write Equations 56 and 58

in the form

Qw,x) = Qu(w)]c)?| (4mx)"2e720% | (62)
« 2 ik(|g-x'] - |x-x"D
Q(w,x) =_gi__[/e .
Tr(l&TT)l' |3$_§v| x' l?f-,},.(nl x"

< [t xact e P, etk e D guge L (63)

where, from Equation 43,

lc(k) |2 = 1 + 4e’Re(k) . (64)

(In deriving Equation 64 terms of order e* were dropped.)
1 "

The integral over x and X in Equation 63 has been evaluated using

the forward-scatter approximation. The details of that calculation are given

-17-



in Appendix B. The resulting approximate expression for a(w,i) can be

written
Qw,x) = (4m) 72 [W(w) x| C (k) |2 (1-e7*F)Q, ()] (65)

where W is defined by

Ww) = 4™ Z(w,k) (66)
and
Z(w,v) = 2/ 7(w,E)cos VE dE . (67)

0

An expression for Q(w,x) can now be obtained by substituting the
formulas for Q(w,z) and a(waﬁ) given by Equations 62 and 65 into
Equation 53. In so doing we simplify matters slightly by making the approxi-
mation |C(k)|2 = 1. After dividing through by the spherical-spreading term

(41%)"% we obtain finally
(41%)2Q(w, %) = e724¥Q () + W(w)x(1-e **)Q (w) . (68)

It should be pointed out here that, although the error in the general
formulas for R and S given by Equations 21, 22, 23, 27, 30, and 33 is of
order €3, the error in Equation 68 is of order €2. This is because some

terms of order €? were dropped in the derivation of this equation.

We see from Equation 68 that, as oax > 0,

T TQUW,x) > Q@) -

-18-




Thus, as € and/or x (the source-field point distance) goes to zero,
the wave spectrum (with the spherical-spreading term factored out)
approaches the source spectrum, as we would expect. In the opposite

limit, i.e., as oax > <, Equation 68 shows that
(41x)2Qw,x) > WxQ, (@) .

We see therefore that the wave spectrum (again apart from the spherical-

spreading term) tends to a limiting form as x + ©, This limiting form,

which is given by the convolution of W with Q,, is referred to here as
the fully-developed spectrum.

It may be verified by direct integration of Equation 68 that

(41rx)2fQ(w,3‘</)dw =/Qo(u))dw : | (69)

In the derivation of Equation 69 we have used the fact that

fw(w)dw =1 .

Equation 69 shows that the total signal power; i.e., the area under the
spectral curve, normalized by the spherical-spreading term, is conserved.

We can simplify Equation 68 further by assuming a narrow-band source,
i.e., by assuming that the characteristic width of the source spectrum
Qo(w) is much less than that of the function W(w). Then, insofar as the
convolution integral is concerned, Qo(w) can be regarded as a delta function.

Accordingly we replace Qo(m) in the convolution term by

-19-



Ag[8(w-wy) + 8 (whwy) ]

(since Qo must be an even function), where W, >0 (uo is called the

carrier frequency) and A, > 0. We can also write, in this case,

eT20X Q (W) = e72%0X Q,(w)

where o, = ezkgﬁ and k; = w /c ;. Then Equation 68 becomes

=20, X -2, X
W) 2Qw,x) = e " Q W + (1-e )W , (70)
where
Q. (w) = Ay [W(w-wy) + Wlwtwy) ] . (71

By introducing a "broadening parameter" R, defined by
B=1-e s (72)
we can write Equation 70 in the form
(41x)2Qw, %) = (1-B)Q  (w) + BQ (W) - (73)
Thus we see that the wave spectrum (with the spherical-spreading term

factored out) can be regarded in this case as a linear (in B) interpolation

between the source spectrum Q (w) and the fully-developed spectrum Q, (w).

-20-




We define the bandwidth @ of the wave spectrum for the narrow -

band case by writing

w(x) = [./Ew-wo)zQ(w,;g)du/ fQ(w,g,c)dw LI (74)
0 "0

By substituting the expression for Q given by Equation 73 into Equation

74 we obtain
Beo = [-pB2 + 8a2 12, (75)

where 50 is the bandwidth of the source spectrum and &m is the bandwidth

of the fully-developed spectrum; i.e.,

S Y R - 3

w, = (w-0y)"Qp (w)dw/ J Q4 (w)dw , (76)
L o 4 .

@ = f(w—wu)zQw(w)dw/me(w)dw 3 (77)
L J , .

Equation 75 shows that ®(x) increases monotonically with x from the value

&o at x = 0, and that it approaches &w with increasing x.

If we assume that &, =~ 0, which is consistent with the assumption of a

0

narrow-band source, then Equation 75 yields
~ Lo~
wx) = B~ w_ . (78)

When oo X << 1 we have, from Equation 72, R = 2a0x = 2!:2k§2a<, and hence, from

Equation 78,

3

Bx) = ek, )% & | (79)
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Equation 79 is valid when €k0(2£x)é

<< 1, i.e., when o << &m. This
equation shows that, when the propagation distance is small, the spectral
bandwidth increases as the square root of the propagation distance, and
is also linear in the carrier frequency in this range.

In order to show the broadening phenomenon graphically, numerical
calculations of the quantity (Aﬂx)zQ(wtﬁ) as a function of w  have
been made for various values of £ using Equation 73. For this purpose
the source spectrum Qo(w) was chosen to be a narrow-band Gaussian func-
tion, centered at w = W, and reflected about the w = 0 axis (since
Q, must be an even function). The function W(w) was also chosen to be
a reflected Gaussian, with a maximum in the first instance at w = 0 and
in the second at a frequency , for which 0 < ;, << w,.

The results of these calculations are plotted (in dimensionless
coordinates ) in Figures 1 and 2. All of the curves in each figure are
plotted on the same scale. Note that in each figure the curve labeled
B = 0 corresponds to the source spectrum, the curve labeled B8 = 1
corresponds to the fully-developed spectrum, and those labeled with values
of B between zero and one correspond to intermediate stages in the
broadening process. Both sets of curves show clearly the broadening of the
wave spectrum with increasing B, which is equivalent to increasing either
the propagation distance or the strength of the randomness of the medium.
The two sets differ, however, in one respect. The results shown in Figure
2, for which the function W(w) has a maximum at a non-zero value of w,
are marked by the appearance of side lobes on the broadened spectrum. In
Figure 1, by contrast, for which the maximum of W(w) occurs at w = 0,

no such side lobes appear.
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The results obtained here appear generally to be in qualitative agree-
ment with observations, as can be seen by, for example, comparing Figure 1
with Figure 11 of Reference 1 or Figure 3 of Reference 2. Note moreover
that the observations reported in References 1 and 2 indicate conservation

of total signal power, which is also consistent with the present results

(cf. Equation 69).
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LIST OF FIGURES

Fig. 1. Dimensionless wave spectrum (with the spherical-~spreading

term factored out) vs. dimensionless frequency for various values of
the broadening parameter f. The calculations are based on Equation
73. The mark on the horizontal scale corresponds to the carrier

frequency w_ . The function W(w) has a maximum at w = O.

0

Fig. 2. Same as Fig. 1, except that the function W(w) has a maximum

at a non-zero value of w.

-27-



T ‘814

AONINODIYL SSHINOISNINIA

000 = ¢

NAYLOAJS TAVM SSHINOISNHINIA

-28-




Z°%1a

AONINOIYL SSH'INOISNJIINIA

£¢°0 = ¢

000 = ¢

NNYLOHAdS HAVAM SSHINOISNHNIA

-29-



APPENDIX A.  CALCULATION OF G(t,zf) AND H(w,;i)

The function G(tté) is determined by Equation 39, together with the
initial condition G =0 for t < 0. An equation for the transform
H(waﬁ) of G(tﬂﬁ), as defined by Equation 31, is obtained by transforming

both sides of Equation 39. The result is

[' V2 + (1+3e?)k? JH(w,x) + (e®k*/m) fg-leiki

X X(EVH(W,XH)E = ~8(0) (A1)

where the function X(kié) is defined by

X(,8) = K°T(c 'E,8) - 2ike'T (c|'€,E)

Pl S Con 9 SR (A2)

In order to solve Equation Al we introduce the spatial Fourier trans-

form ﬁ(w,m) of H(w,x), defined by
” A

f(w,m =fH(w,§)e'1‘3'i‘d35 , (A3)

3
where m X = 2: m X, . Transforming both sides of Equation Al according to
i=1

the prescription given by Equation A3 and solving for f yields

H(w,m) = [D(k,m)]"} , (A4)
e A

where we have defined
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D(kﬂ? =m? - (1+3c?)k? - (ezkz/n)fe;"e“‘E

X x(k,i)eiﬂ.édi . (AS5)

With the aid of Equation A4 we can now express H(w,x) as an inverse trans-
n

form, i.e., we write

-1 . .
H(w,x) = (87%) [D(k,E)]'leIE de . (A6)

In order to proceed further we assume that the medium is statistically
isotropic, so that we can write TI(7,§) = ['(1,£). Then, in view of Equation
-~

A2, we can also write )((k,£) = X(k,E). The angular integration in Equation

A5 can now be carried out, yielding

D(k,m) = D(k,m) = m* - (1+3e”)k* - 4e’k*n”’ feikgx(k,g) sin mEdE . (A7)
0

Upon substituting the expression for D given by Equation A7 into Equation

A6 and carrying out the angular integration we find that
(o]
H(w,x) = (2m?x)~? f[D(k,m)]_lm sin mx dm . (A8)
e
0

The integral in Equatibn A8 can be evaluated by means of contour integration,

after which the expression for H can be written

H(w,x) = (2nx)“[nm(k,.<)]‘1.<ei"x ) (A9)

Here Dm denotes the derivative of D(k,m) with respect to m

(regarded now as a complex variable); and K is the root of the dispersion
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equation D(k,k) = 0 which has the property that k -k as € =+ 0.
This root is given, to lowest order in ¢, by Equation 41. Upon sub-
stituting the expression for «k given by Equation 41 into Equation A9,
after calculating Dm using Equation A7, we obtain the expression for
H given by Equation 40.

The function G(taﬁ) can now be obtained by applying the inverse
Fourier transform to Equation 40. We shall not carry out that calculation
here, however, since we need only the function H(wxg). That calculation

was carried out in Reference 20 for the case of a time-independent medium.
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APPENDIX B. CALCULATION OF 6 USING THE FORWARD-SCATTER APPROXIMATION

By making explicit the ' integration in Equation 63 and changing the

order of integration we can write the expression for 6 in the form
Q,x) = [2e?/m(4m*] [k'*|ck)]* Q, ()1, x;0")dw" (B1)
< ~
where the integral 1 is defined by

ik'(’_ _xvl _ I?i—{"l )
I(w,x;w') = £ L2 Z(w-w',x" -x")
il | x-x"|x" | x-x" | x" -«
A A& A AA

ik (x'-x" )e - a'(x'+x"

X e )dﬁ'dx“" . (B2)

Here k' = w'/c, and a' = e’k'29, Equation B2 can be written in the

alternate form

ik' (lx—x'] + x') —ik'(|§jx"| + x")
I(w,x;w") ./:/' € -
IZ{_ I x—x' x™"

RIS

TR | e mt (et ? 1
2@’ ,x" —x"yet KK [xx"] -1 G-k |x-x"
n

o~

JEPE RV I 1
e @ (x'+x )dx'dx" . (B3)
A A

which is more convenient for the application of the forward-scatter
approximation.
We begin the analysis by substituting for Z in terms of I in Equation

B3 with the aid of Equation 35. By changing the order of integration in the

resulting expression for I we get
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./1mw{[[“*“*W+X> o IK (x| + x™
lff_‘ I " "

X-X I X
FrO 7
x T(T,x" 'ﬁ')ei(k“k') 52" -1 Gekt) [ x-x

! ' 1"
x o @ KT g agrar (B4)
[ Ao
Next we use Equation 24 to substitute for I' in terms of 1y in Equation
B4, Upon reversing the order of the averaging and integration (over 35

and x" ) processes, we note that the double spatial integral can be split

into a product of two integrals. Equation B4 can then be written

]
I = fei(‘*"“’ T e, (B5)
where
I=33 (B6)
ik' (Jx-x'| + x")
J, = U/Pe = b(e,x)el TR XK lgotx" g (B7)
| x-x"|x"
A A
and
—ik'(lx—x"] + X" ) . ] "
J = JE = b(e-T,x" Yo LUk x|
- !X-X"I x" -
e
PR
x e ¥ axn | (B8)

We can now apply the forward-scatter approximation, as discussed in

Reference 21, to the integrals J+ and J_. This yields
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X
J+ = (ZTri/k'x)eik x./.u(t,O,O,x')el(k-k ) (x-x')

0

-y V5!
X e o' X dx' + 0(kl—2) , (Bg)
. X
el - 1! 1
J_ = -(2mi/k"'x)e ik xfu(t—T,0,0,x" e i(k-k") (x~x"")
0
—a'x"

X e dx" + 0(k'"?%) . (B10)

In the derivation of Equations B9 and B10'we'have set x= (0,0,x). This
entails no loss of generality since the medium has been assumed statistically
isotropic.

Conditions for the validity of the forward-scatter approximation are
given in Reference 21. 1In the present context these conditions take the

form

kIl << x << klf,z s (B11)

where k is a characteristic wavenumber associated with the wave field.
1

By substituting the expressions for J+ and J_ given by Equations B9

and Bl0 into Equation B6, dropping terms of order k’-a, and averaging, we

obtain

X X 3 ' 1" '
<J>, = (412 /K" ?%x?) ffF(T,x" —x')el(k-k ) (=7 -x")
o o

PR PR '
x o % (" HAXT) g (B12)

The double integral in Equation B12 can be partially evaluated with the aid

of the coordinate transformation £ = x" - x', n = x" + x'. The result is
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<J'>A = (éﬂz/a'k'zxz)“/f F(T,E)(e_a'g—e-za'xea'g)

0

x cos[(k-k')g] dE . (B13)

In deriving Equation B13 we have made use of the fact that TI'(1,§) 1is given
in £,

We can now get a series expansion for <J>A in powers of a'
(which is equivalent to an expansion in powers of €?) by expanding the

terms exp(a'€) and exp(-a'¢) in Equation B13 and integrating term by

term. This yields

<J> = @r?fa'k?x?) Y, (D7 [1-(-1)"e™** *] (@' ™/n1)
n=0
X .
x fg"r(r,a cos[ (k-k')E] dE . (B14)
0

When x >> & the integration in Equation Bl4 can be extended to +
without introducing significant error into the integral. Upon dropping all

but the first term of the resulting expansion we obtain

[o o}

- L
<I>, = (472 /a'k' 2x?) (1-e 2% %) fl’(r,g)cos{(k-k')g] dg . (B15)
0
An approximate expression for the integral I can now be obtained by
substituting the result for <J>A given by Equation B1l5 into Equation B5
and carrying out the integration over Tt. This yields

-2a'x

I = (2r%/a'k'%x?) (1-e )2 (w-w',k-k") (B16)
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where 2 is defined by Equation 67. Upon combining Equations Bl and Bl6

we obtain the expression for 6- given by Equation 65.
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